Innovative pathway biology

Aging is not a disease, in and of itself, but it correlates with cellular damage, loss of energy, and lifestyle influences.

Aging is associated with many diseases(2,21,32).  For your convenience, you can search the US National Library of Medicine (National Institutes of Health) for current published peer-reviewed articles that include Nrf2, Nrf1 and NAD by indication in the dark grey area below.

Clicking ‘indication’, you will see the results for ‘indication + nrf2 + nrf1 + nad’. If your search turns up empty, it means that there are no studies that mention the three separate pathways in the same study (see example Macular degeneration).

Example number of studies grouped by indication (as of 11/06/19; yellow links in dark grey are updated in real time):

Ex. Macular degeneration:

  • Nrf2, Nrf1 and NAD: 0 studies
  • Nrf2: 98 studies
  • Nrf1: 2 studies
  • NAD: 32 studies

Ex. Alzheimer’s:

  • Nrf2, Nrf1 and NAD: 123 studies
  • Nrf2: 2,832 studies
  • Nrf1: 336 studies
  • NAD: 3,304 studies

Ex. Hypertension:

  • Nrf2, Nrf1 and NAD: 155 studies
  • Nrf2: 6,023 studies
  • Nrf1: 601 studies
  • NAD: 10,755 studies

Ex. Psoriasis:

  • Nrf2, Nrf1 and NAD: 21 studies
  • Nrf2: 945 studies
  • Nrf1: 49 studies
  • NAD: 866 studies

SEARCH LINKS – BIOLOGICAL PATHWAY REGULATION IN SEVERAL DISEASES

Click on a link below for the current – up-to-date – search results in The US National Library of Medicine – National Institutes of Health.

Are you ready to share your feedback?

MORE PATHWAY BIOLOGY LITERATURE

 

BOOKS / PROCEEDINGS

  1. Gelpi RJ et al. Biochemistry of oxidative stress: Physiopathology and clinical aspects. Springer International Publishing Switzerland2016. ISBN 978-3-319-45864-9.
  2. The Metabolic Approach to Cancer: Integrating Deep Nutrition, the Ketogenic Diet, and Nontoxic Bio-Individualized Therapies. Winters N, et al
  3. From the symposium ‘Metabolism, Life History and Aging’ presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2010, at Seattle, Washington.

 

REFERENCES

  1. Nelson S K, et. al The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy, Free Radic Biol Med. 2006 Jan 15;40(2):341-7.
  2. Hybertson BM, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation.Mol Aspects Med. 2011;32(4-6):234-246.
  3. Pall ML, et al. Nrf2, a master regulator of detoxification and also antioxidant, antiinflammatory and other cytoprotective mechanisms, is raised by health promoting factors.Acta Physiologica Sinica.2015;67(1):1–18.
  4. Brunet A, et al. Epigenetics of Aging and Aging-related Disease.J Gerontol A Biol Sci Med Sci.2014;69(1):S17–S20.
  5. D’Aquila P, et al. Mitochondria in health, aging and diseases: the epigenetic perspective.Biogerontology.2015;16(5):569-585.
  6. Guzik TJ, et al. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal.2017;doi:10.1089/ars.2017.7299 (Epub ahead of print).
  7. Poljsak B. Strategies for Reducing or Preventing the Generation of Oxidative Stress.Oxidative Medicine and Cellular Longevity.vol. 2011, Article ID 194586, 15 pages, 2011. doi:10.1155/2011/194586.
  8. Egea J, et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).Redox Biol.2017;13:94–162.
  9. Pamplona R. Mitochondrial DNA Damage and Animal Longevity: Insights from Comparative Studies.Journal of Aging Research.Vol. 2011, Article ID 807108, 9 pages, 2011. doi:10.4061/2011/807108.
  10. Valero T. Mitochondrial biogenesis: pharmacological approaches.Curr Pharm Des. 2014;20(35):5507-5509.
  11. Lopes C, et al. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?Mol Neurobiol. 2017;54(3):1858-1873.
  12. Kehrer JP, et al. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.Crit Rev Toxicol. 2015;45(9):765-98.
  13. Periyasamy P, et al. Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection.Prog Retin Eye Res. 2017;pii:S1350-9462(17)30057-5.
  14. Mishra V, et al. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets.Pharmacol Ther. 2017;pii:S0163-7258(17)30221-8.
  15. Calabrese V, et al. Redox regulation of cellular stress response in neurodegenerative disorders.Ital J Biochem. 2006;55(3-4):263-282.
  16. Yang X, et al. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies.Front Physiol. 2017;23;8:600.
  17. de Almeida AJP, et al. Aging: Molecular Pathways and Implications on the Cardiovascular System.Oxid Med Cell Longev. 2017;7941563.
  18. Lewis KN, et al. Nrf2, a Guardian of Healthspan and Gatekeeper of Species Longevity.Integrative and Comparative Biology.2010;50(5):829-843.
  19. Gao B, et al. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders.Clin Pharmacol.2014;6:19-34.
  20. Nagata N, et al. Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice.Diabetes.2017;66(5):1222-1236.
  21. Xue M, et al. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease.Thornalley Diabetes.2008;57(10):2809-2817.
  22. Johnson DA, et al. Nrf2–a therapeutic target for the treatment of neurodegenerative diseases.Free Radic Biol Med.2015;88(B):253-267.
  23. Denzer I, et al. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.Pharmacol Res.2016;103:80-94.
  24. Hybertson BM, et al. Role of diet in prostate cancer: the epigenetic link.Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. JM. Mol Aspects Med.2011;32(4-6):234-246.
  25. Labbé DP, et al. Role of diet in prostate cancer: the epigenetic link.Oncogene.2015;34(36):4683-4691.
  26. Johnson JA, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration.Ann N Y Acad Sci. 2008;1147:61-9.
  27. Liddell JR, et al. Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration?Antioxidants (Basel).2017;18:6(3).
  28. Sandberg M, et al. NRF2-regulation in brain health and disease: Implication of cerebral inflammation.Neuropharmacology.2014;79:298-306.
  29. Egea J, et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).Redox Biol.2017;13:94–162.
  30. Poljsak B, et al.Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants.Oxidative Medicine and Cellular Longevity.2013;2013:956792.
  31. Benoist d’Azy C, et al.Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis.PLoS One.2016;1;11(12):e0166915.
  32. Johnson et al., Nrf2—a therapeutic target for the treatment of neurodegenerative diseases, Free Radic Biol Med. 2015 Nov; 88(Pt B): 253–267

 

* The scientific content of this website is simplified. For more in depth information we refer to the publications listed as a reference list.
We will use the words “free radicals” as a synonym for all the harmful products involved in the process of oxidative stress.
** ROS are also around us in the environment in the form of sunlight, air pollution, cigarette smoke, poor diet, and many other sources.